

OCR (A) Physics GCSE PAG 03 - Investigating the acceleration of a trolley down a ramp

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

DOG PMTEducation

R www.pmt.education

What apparatus is used to measure speeds and times more accurately?

What apparatus is used to measure speeds and times more accurately?

A light gate (or set of light gates).

How can you find the average speed of a trolley down a ramp?

How can you find the average speed of a trolley down a ramp?

Record the distance travelled (using a ruler) and the time taken (using a stopwatch) for the trolley to travel the measured distance. Then apply the formula:

Average speed = distance / time

www.pmt.education

What is the initial velocity of a trolley rolling down a ramp?

What is the initial velocity of a trolley rolling down a ramp?

0 m/s (provided it is released from rest, not pushed).

How can you calculate the acceleration of a trolley without a light gate?

How can you calculate the acceleration of a trolley without a light gate?

- Record the distance, s, using a ruler
- Release the trolley from rest so the initial velocity is 0 m/s
- Record the time taken, t, using a stopwatch
 - Apply the equation: $s = ut + \frac{1}{2} at^2$

What is the equation used to calculate acceleration from initial velocity, time and distance, and how is it rearranged for acceleration?

How should 2 light gates be set up to investigate the motion of a trolley?

How should 2 light gates be set up to investigate the motion of a trolley?

One just below the release point One at the bottom of the slope

How can 2 light gates be used to work out the acceleration of the trolley?

How can 2 light gates be used to calculate the acceleration of the trolley?

- Record the distance between them
- The light gates will record the speed of the trolley as it passes through them and the time
 - taken to pass between them
 - Use the equation a = (v-u)/t

 $\mathbf{\mathbf{E}}$

PMTEducation

How should 1 light gate be set up to investigate the motion of a trolley?

How should 1 light gates be set up to investigate the motion of a trolley?

Position the light gate at the bottom of the slope.

How can 1 light gate be used to work out the acceleration of the trolley?

How can 1 light gate be used to calculate the acceleration of the trolley?

- Measure the time taken from the release to the trolley passing through the light gate
- The light gate will record the final velocity, v
 u is 0 m/s
 - Use the equation a = (v-u)/t

